Exercise 16. Determine the radius of convergence of the series $\sum_{n=1}^{\infty} a_n z^n$ when:
(1) $a_n=(\log n)^2$
(2) $a_n=n$ !
(3) $a_n=\frac{n^2}{4^n+3 n}$
(4) $a_n=(n !)^3 /(3 n)$ !
(5) Find the radius of convergence of the hypergeometric series
\[
F(\alpha, \beta, \gamma ; z)=1+\sum_{n=1}^{\infty} \frac{\alpha(\alpha+1) \cdots(\alpha+n-1) \beta(\beta+1) \cdots(\beta+n-1)}{n ! \gamma(\gamma+1) \cdots(\gamma+n-1)} z^n .
\]
Here $\alpha, \beta \in \mathbb{C}$ and $\gamma \neq 0,-1,-2, \cdots$
(6) Find the radius of convergence of the Bessel function of order $r$ :
\[
J_r=\left(\frac{z}{2}\right)^r \sum_{n=0}^{\infty} \frac{(-1)^n}{n !(n+r) !}\left(\frac{z}{2}\right)^{2 n},
\]
where $r$ is a positive integer.