Prove that $\mathrm{W}^{1,1}(ℝ^n)$ is complete. [You may assume that $\mathrm{L}^1(ℝ^n)$ is complete.]

Let $(u_j)$ be a Cauchy sequence in $\mathrm{W}^{1,1}(ℝ^n)$: since \[ \|u_i-u_j\|_{\mathrm{W}^{1,1}}=\|u_i-u_j\|_1+\sum_{k=1}^n\|∂_k u_i-∂_k u_j\|_1 \] it follows that the sequences $(u_j),(∂_1 u_j), …,(∂_n u_j)$ are Cauchy in $\mathrm{L}^1(ℝ^n)$. By completeness of $\mathrm{L}^1(ℝ^n)$ we find $u, v_1, …, v_n ∈ \mathrm{L}^1(ℝ^n)$ such that $\|u-u_j\|_1 → 0$ and $\|∂_k u_j-v_k\|_1 → 0$ as $j → ∞$ for each $k ∈\{1, …, n\}$. Let $ϕ ∈ 𝒟(ℝ^n)$. Then \begin{aligned} &⟨∂_k u_j, ϕ⟩=∫_{ℝ^n} ∂_k u_j\ ϕ \mathrm{d} x → ∫_{ℝ^n} v_k ϕ \mathrm{d} x, \\ &⟨∂_k u_j, ϕ⟩=-⟨u_j, ∂_k ϕ⟩=-∫_{ℝ^n} u_j ∂_k ϕ \mathrm{d} x →-∫_{ℝ^n} u ∂_k ϕ \mathrm{d} x=⟨∂_k u, ϕ⟩ \end{aligned} as $j → ∞$. But then $⟨∂_k u, ϕ⟩=∫_{ℝ^n} v_k ϕ \mathrm{d} x$, and since $ϕ$ was an arbitrary test functions, $∂_k u=v_k ∈ \mathrm{L}^1(ℝ^n)$. Thus $u ∈ \mathrm{W}^{1,1}(ℝ^n)$ and since clearly $\|u_j-u\|_{\mathrm{W}^{1,1}} → 0$ we are done.

Give an example of a distribution $u ∈ \mathrm{W}^{1,1}(ℝ^2)$ that does not have a continuous representative.

Put $χ=ρ *𝟏_{B_2(0)}$. Then $χ ∈ 𝒟(ℝ^2)$ and $𝟏_{B_1(0)} ≤ χ ≤𝟏_{B_3(0)}$. Define for an $α ∈(0,1)$ the function $u(x, y)=(x^2+y^2)^{-\frac{α}{2}} χ(x, y),(x, y) ∈ℝ^2$. Note that $u$ is continuous on $ℝ^2 ∖\{0\}$ hence is measurable, hence as $∫_{ℝ^2}|u(x, y)| \mathrm{d}(x, y) ≤2π ∫_0^3 r^{1-α} \mathrm{d} r=2π 3^{2-α} /(2-α)<+∞$ we have $u ∈\mathrm{L}^1(ℝ^n)$. The distribution $u$ does not have a continuous representative since if $f ∈ \mathrm{C}(ℝ^n)$ and $m=\max _{\overline{B_3(0)}} f(x, y)$, then for $r=|(x, y)|<\min \{1, m^{-1 / α}\}$ we have $u(x, y)=r^{-α}>m ≥ f(x, y)$ and consequently $u$ and $f$ cannot agree almost everywhere.
The function $u$ is symmetric in $x, y$ so it suffices to prove that $∂_x u ∈\mathrm{L}^1(ℝ^2)$. First we calculate the usual partial derivative of $u$ on $ℝ^2 ∖\{0\}$: $u_x=-α x r^{-α-2} χ+r^{-α} χ_x$. The function is continuous on $ℝ^2 ∖\{0\}$ hence measurable and (since $|x| ≤ r$) \[ ∫_{ℝ^2}|u_x| \mathrm{d}(x, y) ≤2π ∫_0^3(α r^{-α}+r^{1-α} \max |χ_x|) \mathrm{d} r<+∞ \] since $α<1$ it follows by Tonelli's theorem that $u_x ∈ \mathrm{L}^1(ℝ^2)$. Next we must check that $u_x$ equals the distributional partial derivative $∂_x u$. For each $y ≠ 0$, $u_x$ is continuous, we calculate for a test function $ϕ ∈ 𝒟(ℝ^2)$ by integration by parts: \[ ∫_{-∞}^{∞} u ϕ_x \mathrm{~d} x=-∫_{-∞}^{∞} u_x ϕ \mathrm{d} x \] and since $ℝ ×\{0\}$ is a null set we get by use of Fubini's theorem that \[ ⟨u, ϕ_x⟩=-∫_{ℝ} ∫_{ℝ} u_x ϕ \mathrm{d} x \mathrm{~d} y=-∫_{ℝ^2} u_x ϕ \mathrm{d}(x, y) . \] Thus $∂_x u=u_x ∈ \mathrm{L}^1(ℝ^2)$ and therefore $u ∈ \mathrm{W}^{1,1}(ℝ^2)$.

Conclude that the convergence $u_j → u$ in $\mathrm{W}^{1,1}(ℝ^2)$ does not entail that $\|u_j-u\|_{∞} → 0$

Put $u_j=ρ_{1 / j} * u$. Then $u_j ∈ \mathrm{C}^{∞}(ℝ^2)$ and since $∂_s u_j=ρ_{1 / j} *∂_s u$ it follows by Fubini that $\|u_j\|_1 ≤\|u\|_1,\|∂_s u_j\|_1 ≤\|∂_s u\|_1$ (for $s ∈\{x, y\})$, so $u_j ∈ \mathrm{W}^{1,1}(ℝ^2)$ too and $\|u_j-u\|_{\mathrm{W}^{1,1}} → 0$. But $u_j$ is in particular continuous, so if $\|u_j-u\|_{∞} → 0$, then the triangle inequality yields $\| u_j-u_k\|_{∞} ≤\| u_j-u\|_{∞}+\| u-u_k \|_{∞} → 0$, that is, $(u_j)$ is Cauchy in $\mathrm{L}^{∞}(ℝ^2)$ and so is a uniform Cauchy sequence. It then converges uniformly and so $\lim _{j → ∞} u_j$ is a continuous function. By Fatou's lemma $\|\lim _{j → ∞} u_j-u\|_1 ≤\lim _{j → ∞}\|u_j-u\|_1=0$ and so $\lim _{j → ∞} u_j$ is a continuous representative for $u$, a contradiction concluding the proof.