- Factor the ideal π into prime ideals in $πͺ_K$ in the following cases
- Let $K=π(\sqrt{10})$. Show that $πͺ_K$ is not a principal ideal domain.
Since $10 β‘ 2 \pmod 4$, we have $πͺ_K = π[\sqrt{10}]$.
Consider the ideals $I = (2, \sqrt{10})$.
Assume that $I$ is a principal ideal, i.e., $I^2=(2)βN(I)=Β±2$.
Suppose $I=a+b\sqrt{10}$, then $a^2-10b^2=Β±2$.
Quadratic residues mod 10 are 0,1,4,5,6,9, so no solution.
so $I$ cannot be principal.
Therefore, $πͺ_K$ is not a PID.
- Suppose that $K=π(\sqrt{d})$, $d$ squarefree and $d β 0,1$. Show that whether (2) ramifies, is inert, or splits completely on $πͺ_K$ depends only on the value of $d\pmod8$, and classify the different possibilities.
Dedekindβs criterion applies, since $πͺ_K=π[Ξ±],Ξ±=\begin{cases}\sqrt{d}&dβ‘2,3\pmod4\\\frac{1+\sqrt{d}}2&dβ‘1\pmod4\end{cases}$ by 2.17
When $dβ‘3\pmod4$, minimal polynomial of Ξ± is $m=X^2-d,\bar m=(X+1)^2$ in $π½_2$, so (2) factors to $(2,Ξ±+1)^2$, so (2) ramifies.
When $dβ‘2\pmod4$, $m=X^2-d,\bar m=X^2$ in $π½_2$, so (2) factors to $(2,Ξ±)^2$, so (2) ramifies.
When $dβ‘1\pmod4$, $m=X^2-X+\frac{1-d}4$, separate 2 cases:
β’ $dβ‘1\pmod8$, $\bar m=X(X+1)$, so (2) factors to $(2,Ξ±)(2,Ξ±+1)$, so (2) splits completely.
β’ $dβ‘5\pmod8$, $\bar m=X^2-X+1$ is irreducible, so (2) is inert.
- Let $K=π(\sqrt{15})$. Show that there is a unique ideal in $πͺ_K$ of norm 12. Is it principal? Find all ideals containing 8.
$πͺ_K=π[\sqrt{15}]$.
By Dedekind $(2,Ξ±+1)^2=(2),(3,Ξ±)^2=(3)$
$(2,Ξ±+1)^2=(2)βN((2,Ξ±+1))=2$
$(3,Ξ±)^2=(3)βN((3,Ξ±))=2$
If an ideal $I$ is of norm 12, then $I$ divides $(12)=(2,Ξ±+1)^4(3,Ξ±)^2$, so $I=(2,Ξ±+1)^i(3,Ξ±)^j,0β€iβ€4,0β€jβ€2$, so $N(I)=2^i3^j=12$, so $i=2,j=1$, so $I=2(3,Ξ±)$. To prove $I$ is not principal, suppose $I=(x_1+x_2\sqrt{15})$ for integers $x_1,x_2$, $N(x_1+x_2\sqrt{15})=Β±N(I)=Β±12βx_1^2-15x_2=Β±12$, both sides mod 5, $x_1^2β‘Β±2\pmod5$, no solution.
$$(8)=(2)^3=(2,Ξ±+1)^6$$
so there are 7 ideals $(2,Ξ±+1)^i,0β€iβ€6$ containing 8.
Why $(2,Ξ±+1)^3$ is not principal? $(2,Ξ±+1)^2=(2)$ so if $(y)=(2,Ξ±+1)^3$ is principal, then $(2)(2,Ξ±+1)=(y)$ implies $(2,Ξ±+1)$ is principal.
- Let $πͺ_K$ be the ring of integers of a number field, and let $p$ be a rational prime. Show that $p$ ramifies in $πͺ_K$ if and only if the ring $πͺ_K/(p)$ has a nilpotent element, that is to say a nonzero element $x$ for which $x^n=0$ for some $n$.
Let \((p) = pπͺ_K = \prod_i π_i^{e_i}\) for
prime ideals \(π_i β΄ πͺ_K\) and \(e_iββ\).
(βΉ). Let \(p\) ramify in \(πͺ_K\), then \(πͺ_K/pπͺ_K
β
\prod_i πͺ_K/π_i^{e_i}\), where at
least one \(e_i > 1\), let us say \(e_1\). Then, \(πͺ_K/π_1^{e_1}\) has a nilpotent element since,
for \(x β π_1 β π_1^{e_1}\), we get \((x+π_1^{e_1})^{e_1}=x^{e_1} + π_1^{e_1} = π_1^{e_1}\).
(βΈ). If \(p\) does not ramify in \(πͺ_K\), then
\(πͺ_K/pπͺ_K β
\prod_i πͺ_K/π_i\), each of which
is a field since \(π_i\) is maximal in
\(πͺ_K\). Each of these fields is finite by
4.6. If \(πͺ_K/pπͺ_K\) has a nilpotent element, then has a nonzero entry in $i$-th position, its projection onto $πͺ_K/π_i$ is nilpotent but $πͺ_K/π_i$ is a field so doesn't have nilpotent elements.
- Let $K=π(\sqrt{-210})$. Show that $8β£h_K$.
We have $-210β‘2\pmod4$, so the Minkowski bound is $\frac4Ο\sqrt{210}<19$. So we only need to look at $p=2,3,5,7,11,13,17$.
$11,13,17$ are inert, so the class group generated by the prime ideals dividing $(2),(3),(5),(7)$. Then $x^2 + 210$ reduces modulo $p$ as
\begin{align*}
x^2 + 210 &β
x^2 \pmod2 \\
x^2 + 210 &β
x^2 \pmod3 \\
x^2 + 210 &β
x^2 \pmod5 \\
x^2 + 210 &β
x^2 \pmod7
\end{align*}
Then let $π_2 = (2,Ξ±),π_3 = (3,Ξ±),π_5 = (5,Ξ±),π_7 = (7,Ξ±)$.
Thus $[π_2],[π_3],[π_5],[π_7]$ generate $\operatorname{Cl}(K)$.
\[π_2π_3π_5π_7=(210,Ξ±)=(Ξ±)\]
Thus $[π_2],[π_3],[π_5]$ generate $\operatorname{Cl}(K)$.
\begin{align*}
π_2^2=&(2)\\
π_3^2=&(3)\\
π_5^2=&(5)\\
π_7^2=&(7)
\end{align*}
Thus $[π_2],[π_3],[π_5]$ all have order 2.
$π_2π_3=(6,Ξ±)$ has norm 6 so not principal (no element of $πͺ_K$ has norm 6)
Similarly $π_2^iπ_3^jπ_5^k$ is principal then $2|i,2|j,2|k$.
Thus $\operatorname{Cl}(K)β
C_2ΓC_2ΓC_2$, so $h_K=8$.
- Let $f(X)=X^3-X^2-2 X-8$. Recall from Sheet 1 that $f$ is irreducible, and that if $Ξ±$ is a root of $f$ and $K=π(Ξ±)$ then $e_1, e_2, e_3$ is an integral basis for $πͺ_K$, where $e_1=1$, $e_2=Ξ±$ and $e_3=\frac{1}{2} Ξ±(Ξ±+1)$.
- Show that the linear maps $Ο_v: πͺ_K β π
_2$ defined by $Ο_v(e_i)=v_i$ are ring homomorphisms, for the following values of $v$:
- $v=(1,0,0)$;
- $v=(1,1,0)$;
- $v=(1,0,1)$.
Conclude that $πͺ_K/(2) β
π
_2^3$.
Define $Ο:πͺ_Kβπ
_2^3$ by $Ο=(Ο_{(1,0,0)},Ο_{(1,1,0)},Ο_{(1,0,1)})$, then
\begin{array}l
Ο(e_1)=(1,1,1)\\
Ο(e_2)=(0,1,0)\\
Ο(e_3)=(0,0,1)
\end{array}
To prove Ο is a ring homomorphism.
$\begin{array}{c|ccc}
&e_1&e_2&e_3\\\hline
e_1&e_1&e_2&e_3\\
e_2&e_2&2e_3-e_2&2e_3+4e_1\\
e_3&e_3&2e_3+4e_1&3e_3-2(e_2+3e_1)
\end{array}$ this table mod 2 is the table $\begin{array}{c|ccc}
&v_1&v_2&v_3\\\hline
v_1&v_1&v_2&v_3\\
v_2&v_2&v_2&0\\
v_3&v_3&0&v_3
\end{array}$
Three values of $v$ all satisfy the table, so $Ο(e_i)Ο(e_j)=Ο(e_ie_j)$ for $1β€iβ€jβ€3$.
To prove Ο is surjective.
$(1,1,1),(0,1,0),(0,0,1)$ is a basis for $π
_2^3$.
To prove ker Ο=(2).
Clearly $(2)β\kerΟ$. On the other hand $N((2))=2^3=8$, $N(\kerΟ)={|πͺ_K/\kerΟ|}={|π
_2^3|}=8$, so $N((2))=N(\kerΟ)$, so $\kerΟ=(2)$.
- Explain why it follows from (i) that (2) splits completely in $πͺ_K$.
From (i) $πͺ_K/(2) β
π
_2^3$, so $(2)=\kerΟ_{(1,0,0)}β©\kerΟ_{(1,1,0)}β©\kerΟ_{(1,0,1)}$ and they are coprime so $(2)=\kerΟ_{(1,0,0)}\kerΟ_{(1,1,0)}\kerΟ_{(1,0,1)}$ in $πͺ_K$.
\begin{array}{lll}
\kerΟ_{(1,0,0)}=(e_2,e_3)=(Ξ±,Ξ±(Ξ±+1)/2)\\
\kerΟ_{(1,1,0)}=(e_1-e_2,e_3)=(1-Ξ±,Ξ±(Ξ±+1)/2)\\
\kerΟ_{(1,0,1)}=(e_1-e_3,e_2)=(1-Ξ±(Ξ±+1)/2,Ξ±)
\end{array}
- Show that $πͺ_K$ does not have a power integral basis.
If $πͺ_K$ has a power integral basis, then Dedekindβs criterion applies, (ii) says (2) splits completely into 3 factors, so $\bar{m}$ splits into 3 factors, in $π
_2[x]$ there are only two monic linear irreducible $x,x+1$, so $\bar{m}$ has a repeated factor, so 2 ramifies, but $πͺ_K/(2) β
π
_2^3$ has no nilpotent elements, contradicting Q5.
- Let $πͺ_K$ be the ring of integers of a number field.
- Let $π$ be a prime ideal in $πͺ_K$ and $n$ a positive integer. Explain why every proper ideal of the quotient ring $πͺ_K/π^n$ is of the form $π^i/π^n$ for some $i$.
Any proper ideal of $πͺ_K/π^n$ is of the form $π/π^n$ for some ideal $πβπ^n$ by correspondence theorem, so $π|π^n$, so $π=π^i$ for some $iβ€n$.
- Show that $π^i/π^n$ is principal. (Hint: first try the case $n=i+1$)
Pick $Ξ±βπ^iβπ^{i+1}$, then $π^{i+1}βΞ±+π^{i+1}βπ^i$, by unique factorization $Ξ±+π^{i+1}=π^i$, so $Ξ±/π^{i+1}$ generates $π^i/π^{i+1}$.
In general, assume $n>i$ (otherwise it's the zero ideal). $βΞ±βπ^iβπ^{i+1}$
\[π^i/π^nβΞ±+π^i/π^nβπ^{i+1}/π^n\]
$Ξ±+π^i/π^n$ generates $π^i/π^n$.
- Let $π$ be an arbitrary ideal in $πͺ_K$. Show that every ideal in $πͺ_K/π$ is principal.
Factor $π=\prod_iπ_i^{e_i}$ for $π_i$ distinct. By CRT $πͺ_K/πβ
\prod_iπͺ_K/π_i^{e_i}$ each factor is principal.
- Conclude that every ideal $π$ in $πͺ_K$ is generated by at most two elements.
Take $0β aβπ$, by (iii) $π/(a)$ is principal so β$bβπͺ_K,π/(a)=(b)/(a)$ so $(a,b) =π$.