Let $C$ be defined by $P(x,y, z)=0$, $P$ homogeneous of degree $d$.
The Hessian $H_p$ of $p$ is
\[
H_p(x, y, z)=\det\begin{bmatrix}
P_{x x} & P_{x y} & P_{x z} \\
P_{y x} & P_{y y} & P_{y z} \\
P_{z x} & P_{z y} & P_{z z}
\end{bmatrix}
\]
A point of inflection of $C$ is a (nonsingular) point $[x, y, z]$ of $C$ with $H_p(x, y, z)=0$.
- Case $d=1$
- $H_p=0$, every point of $C$ is a point of inflection (so, infinitely many points).
- Case $d=2$
- $H_p(x, y, z)$ is constant and nonzero (as $C$ is nonsingular), no inflection points.
- Case $d>2$
- {inflection points} is intersection of $C$, degree $d$, and $H_p=0$, degree $3(d-2)$. As can assume no common component by hint, by weak Bézout there are at most $3 d(d-2)$ inflection points.
\begin{align*}H_p&=\begin{vmatrix}
6 x & 0 & 6 z \\
0 & 6 y & 0 \\
6 z & 0 & 6 x
\end{vmatrix}\\
& =216\left(x^2 y-y z^2\right) \\
& =216 y(x-z)(x+z)
\end{align*}
So $3d(d-2)=9$ inflection points divide into:
- $y=0$ and $x^3+y^3+3 x z^2=0$:
- $[0,0,1],[\sqrt{3} i, 0,1],[-\sqrt{3} i, 0,1]$
- $x=z$ and $x^3+y^3+3 x z^2=0$:
- $[1, \sqrt[3]{-4}, 1]$ for 3 cube roots of $-4$.
- $x=-z$ and $x^3+y^3+3 x z^2=0$:
- $[1, \sqrt[3]{-4},-1]$ for 3 cube roots of $-4$.
Sanity check: 9 points of inflection, consistent with (a). In fact, every nonsingular cubic has 9 points of inflection, which are order-3 points in the group law of cubic.
Try projective transformation
\[
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
a & 0 & b \\
0 & c & 0 \\
0 & 0 & d
\end{array}\right)\left(\begin{array}{c}
\tilde{x} \\
\tilde{y} \\
\tilde{z}
\end{array}\right)=\left(\begin{array}{c}
a \tilde{x}+b \tilde{z} \\
c \tilde{y} \\
d \tilde{z}
\end{array}\right)
\]
This takes $y^2 z-x(x-z)(x-λ z)$ to
\[
c^2 d \tilde{y}^2 \tilde{z}-a^3\left(\tilde{x}+\frac{b}{a} \tilde{z}\right)\left(\tilde{x}+\left(\frac{b-d}{a}\right) \tilde{z}\right)\left(\tilde{x}+\left(\frac{b-λ d}{a}\right) \tilde{z}\right)
\]
To make this of the form
\[
\tilde{y}^2\tilde{z}-\tilde{x}(\tilde{x}-\tilde{z})(\tilde{x}-λ \tilde{z}),
\]
let’s choose $a, b, c, d$ so that:
\begin{aligned}
c^2 d&=1 \\a^3&=1\\
\left\{\frac{b}{a}, \frac{b-d}{a}, \frac{b-λ d}{a}\right\}&=\{0,-1,-\tilde{λ}\}
\end{aligned}
as multiply $a, b, c, d$ by $\sqrt[3]{1}$ makes no difference, can fix $a=1$.
Also fix $c=d^{-1 / 2}$. The first two equations hold. There are 3! possibilities depending on the order in which we identify the sets:
- $(b, b-d, b-λ d)=(0,-1,-\tilde{λ})$:
\[b=0, d=1, \tilde{λ}=λ\text.\]
- $(b-d, b, b-λ d)=(0,-1,-\tilde{λ})$:
\[
b=-1, d=-1, \tilde{λ}=1-λ \text {. }
\]
- $(b, b-λ d, b-d)=(0,-1,-\tilde{λ})$:
\[
b=0, d=\frac{1}{λ}, \tilde{λ}=\frac{1}{λ}
\]
- $(b-d, b-λ d, b)=(0,-1,-\tilde{λ})$:
\[
b=d=\frac{1}{λ-1}, \tilde{λ}=\frac{1}{1-λ}
\]
-
$(b-λ d, b, b-d)=(0,-1,-\tilde{λ})$:
\[b=-1, d=-\frac{1}{λ}, \tilde{λ}=\frac{1}{λ}-1\]
- $(b-λ d, b-d, b)=(0,-1,-\tilde{λ})$:
\[b=\frac{λ}{1-λ}, d=\frac{1}{1-λ}, \tilde{λ}=\frac{-λ}{1-λ}=1-\frac{1}{1-λ} .\]
Note: these acts as a group of Mobius transformations on $λ↦\tilde{λ}$, isomorphic to $S_3$. Can check your calculations by composing Mobius transformations and getting back one of the same 6.
The Arithmetic of Elliptic Curves, Joseph H. Silverman
page 54
the Legendre form of the equation of the elliptic curve is $y^2=x(x-1)(x-λ)$, where $λ ≠ 0,1$. $j$ can be expressed in terms of $λ$ as
\[
j=256 \frac{(λ^2-λ+1)^3}{λ^2(λ-1)^2} .
\]
$λ$ is not uniquely defined, depending on which two roots of the cubic are chosen to be mapped to 0 and 1 , it can take 6 values, $λ, 1-λ, 1 / λ, 1 /(1-λ)$, $λ /(λ-1)$ and $(λ-1) / λ$, but they all give the same value of $j$.