We compute commutators as follows:
\begin{gathered}
{\left[b a^i, a^j\right]=b a^i a^j a^{-i} b a^{-j}=b a^j b a^{-j}=b^2 a^{-2 j}=a^{-2 j},} \\
{\left[b a^i, b a^j\right]=b a^i b a^j a^{-i} b a^{-j} b=a^{j-2 i} a^j=a^{2(j-i)},} \\
{\left[a^i, a^j\right]=1 .}
\end{gathered}
so the commutator $D_{2n}^{(2)}=\left⟨a^2\right⟩$ is Abelian and $D_{2n}^{(n)}=1$ for $n>2$.
Theorem 67 $G$ is solvable iff the derived length of $G$ is finite, i.e. there exists $k∈ℕ$ such that $G^{(k)}=\{e\}$;